AnIML From 30,000 Ft What is AnIML? What can I do with it?

Burkhard A. Schaefer BSSN Software

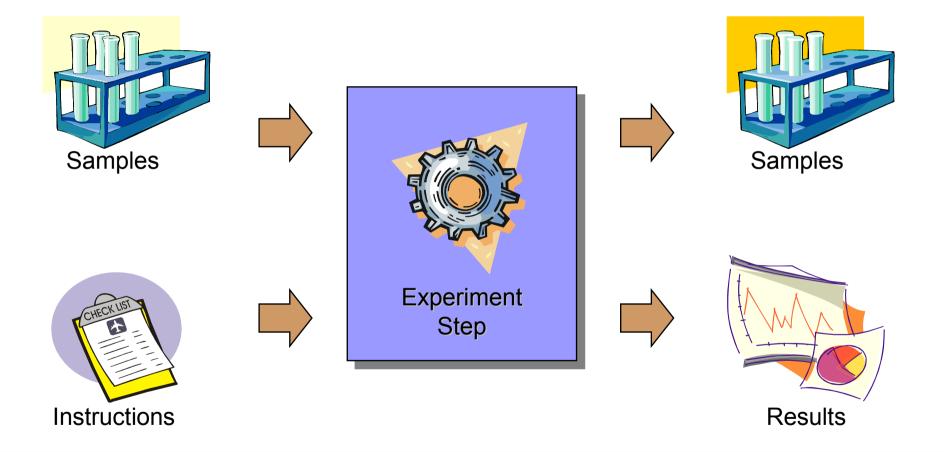
Overview

- Motivation
- Introduction to the AnIML data standard
- AnIML Use Cases
 - Archiving
 - Generic Software
 - Integration
- Summary

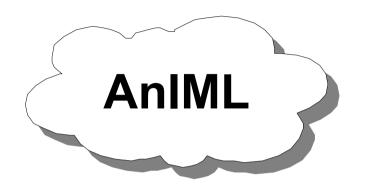
Introduction to the AnIML Data Standard

Outline of AnIML

- Analytical Information Markup Language
- Upcoming ASTM XML standard for analytical data, developed by a consortium of industry, academia, vendors, and government bodies


- **Core** provides generic data container to represent "arbitrary" analytical data
- Technique Definitions explain how to use the Core for specific techniques

AnIML Design Goals


- Ability to capture data from multiple analytical techniques, possibly combined
- Capturing of sample and process data
- Room for extension by vendors and end users
- Audit trails, digital signatures, and validation for regulatory compliance

<mark>bssn</mark> software

AnIML Experiment Model

Possible Roles of AnIML

- Interactive viewing
- Instrument integration
 - Commodity techniques
 - One-offs and custom hardware

- Data management
- Data analysis
- Long-term archiving
- Result delivery
- Publishing, "open access"
- Regulatory submissions

<mark>bssn</mark> software

Optimizing Long-Term Data Archival

Long-Term Data Archival

- Many challenges to manage:
 - Repository and physical storage
 - Data format
 - Conversion tools
 - Needed as long as a particular source format is used
 - Software for data access
 - Needs to be deployed and upgraded "forever"
 - Validation
 - Needed initially and with every upgrade

<mark>bssn</mark> software

Data Formats

• Every allowed data format constitutes a liability

bssn soft

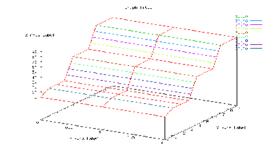
- Software to read the format needs to be preserved as long as the format is current
- Long tail impacts total cost of ownership
- Why not PDF?
 - Stores text and image output, not the underlying data
 - Can not be post-processed

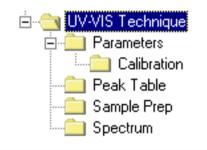
AnIML as an Archival Format

- Open specification
- Captures all required data across techniques:
 - Sample, method and workflow description
 - Instrument and operator
 - Results
 - Identifiers, tracking information (batch, lot, time, ...) to relate information back to original context
- Human readable, even without software tools
- Verbose

Software for Data Access

- "Less is more"
- One tool for any instrument and technique
 - Proprietary software not required
 - Less upgrades & associated re-validation
- Lightweight tool with restricted set of features
 - Low validation effort
- Combination of AnIML and unified archiving tools can reduce total cost of ownership

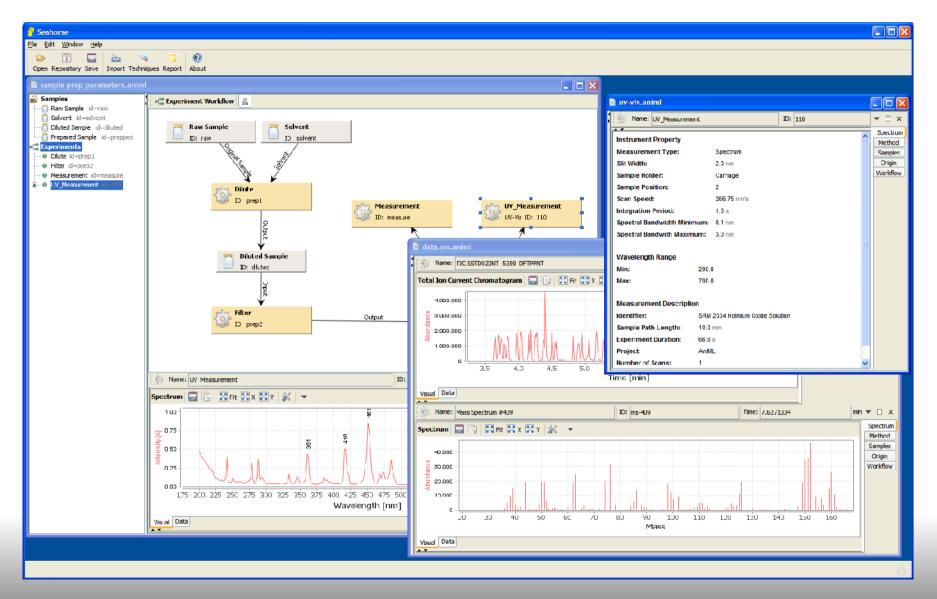

bssn soft


Leveraging Generic Software Applications

AnIML and Generic Software

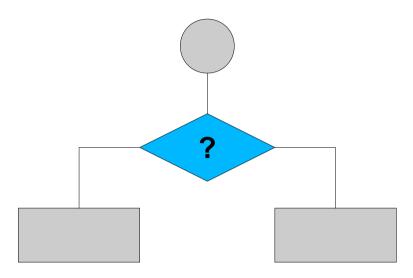
- Many things can be done without understanding the underlying technique:
 - Displaying, reporting
 - Searching and querying
 - Validation and compliance
 - Digital signatures and audit trails
 - Long-term archival

Temperature = 5 °C



Benefits of using generic software components

- Proprietary instrument software is not required to view the data
- Only a compact set of software tools need to be deployed to end user PCs
- Viewing archived data requires only a single tool
- Software can be reused as new techniques are adopted

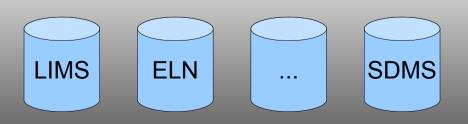

File View Options Help		
E Document Viewer		
Continent Yerror SrM2031 SrM203 SrM2031 SrM	Name: JV_Measurement Zoom In Zoom Out Format Export 1,00 - 0,75 - 0,50 - 0,25 -	Spectrum
	0,00 200 250 300 350	400 450 500 Wavelength
	Instrument Property Measurement Type: Spe Slit Width: 2.0 Sample Holdor: Can	ctrum ricgo
	Sample Position: 2	

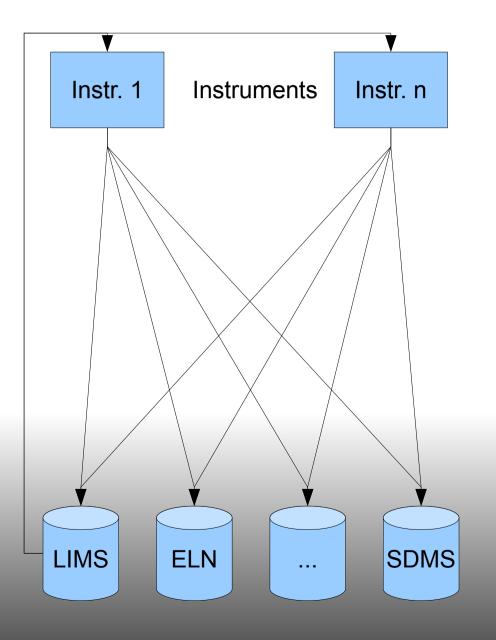
Seahorse Scientific Workbench


Seahorse Scientific Workbench

1		2	3	4	5			6				7			8	·													
0.21428		2.948276	5.918719	3.369458	5.231527			5024			497			3.81															
8.50492		8.807882	9.679803	9.26601	10.05665			3.150246			8.320197			8.541872															
10.1453		10.293103	10.278325	10.514778	10.81034			0985				8227		10.0															
) 10.6403		10.396552	10.344828	10.544335	10.39655			3152		_		9803		10.0															
10.7881		13.293103	10.610837	10.736453	10.52216			2931		10).52	9557	<u> </u>	10.5	522	167													
10.6551		10.374384	10.315271	10.344828	10.13793		10.CI	vohu	100	-len	an,		_		-		_								_				عار
10.1527		10.758621	10.610837	10.721675	10.72167		_ 1	2	3	4	5	6 7	7 8	9	10) 11	12	2 13	14	15	16	17	18	19	20	21	1 22	2 23	24
1 10.4926		10.455665	10.463054	10.507389	10.27832	A							-	_	-	_		_								+	-		
0.83743	8	3.280788	9.546798	0.022167	10.22660	B				_	_		+-	-	-	-	-	-								+	-		
7.2931		1	2	3	4	<u>C</u>				_	_		-	+-	-	+-	-	_							-	+	-		
. 8.8891	Α	0.214286	2.948276	5.918719	3.369458	D E				_	_	_	-	+-	-	+	-								-	+	+-		
. 0.0091 1 9.7832	В	8.504926	8.807882	9.679803	9.26601	F				_	+	_	+-	+-		+	+-	-							-	+	+-		
I 9.5985	С	10.14532	10.293103	10.278325	10.514778							_	+-			+	-								-	+	+-		
) 10.130	D	10.640394	10.396552	10.34482 🚳 Ir	nage						×		╈	+-		+	+	-							-	+	+-		
10.566	E	10.788177	13.293103	10.61083		100						-	-		-			-								-	-		
4	F	10.655172	10.374384	10.31527								-	-																
	G	10.152709	10.758621	10.61083												Ab	ca12										i-		
	H	10.492611	10.455665	10.46305												AT	P-bir	iding	cass	ette,	sub-	fami	ly A	(AB	C1),	,	i –	i	
		0.837438	3.280788	9.546798												me	mber	12									i T		i
	J	7.293103	7.972906	11.24630												pro	tein	codi	na ae	ne							i T		
	K	8.3867	9.103448	10.78078									T														T		i 🗖
		8.889163	9.576355	10.21182				81									Oprk1	VCUD7	111rt	Abca12	च \$	Bc12	2	Cd247	5				
	<u>M</u>	9.783251 9.598522	10.093596 10.049261	10.44827 10.10098	Y	1											93	ç	73	₹,	FIL	<u> </u>	e l	89	5				
	<u>N</u>	9.596522 10.130542	10.359606	10.37438								67	1	9.73			Υ.		<u> </u>	ų	4	4		4					
	P	10.566502	10.05665	10.24876								5		0.4		<	ι,	2 2	1	4	¹ ²	3	2	8	8	7			
	<u> </u>			10.24070										V . I						4		Ψ.	1	~		Ä			
		•			1000							_		_															
							N.																						
					1 100						EFT																		

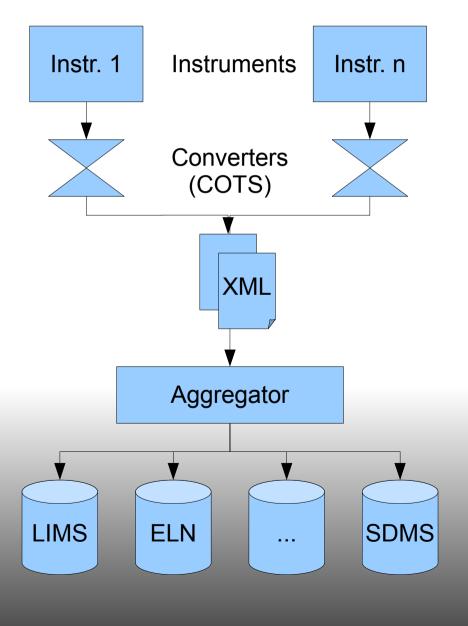
The Vision of Total Integration


Today's Instrument Integration


 Lab informatics landscape consists of many data producers and data consumers

bssn software

Integration ?


Today's Instrument Integration

- Lab informatics

 landscape consists of
 many data producers
 and data consumers
- Linking instruments and data systems often requires a 1-to-1 integration approach

Standards-Based Integration

- Instrument data is converted into AnIML
- Standard data is aggregated
- Target-specific fields are propagated to data systems

bssn software

Low n+1 cost

Summary

- Adopting an open, standards-based approach to data management
 - Enables use of data in new ways
 - Delivers long-term business value
- A combination of AnIML and generic software tools can help us get closer to this goal

<mark>bssn</mark> software

AnIML From 30,000 Ft What is AnIML? What can I do with it?

Live AnIML Showcase Booth #5155